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Hypotheses suggest that structural integrity of vertebrate bones is maintained

by controlling bone strain magnitude via adaptive modelling in response

to mechanical stimuli. Increased tissue-level strain magnitude and rate

have both been identified as potent stimuli leading to increased bone forma-

tion. Mechanotransduction models hypothesize that osteocytes sense bone

deformation by detecting fluid flow-induced drag in the bone’s lacunar–

canalicular porosity. This model suggests that the osteocyte’s intracellular

response depends on fluid-flow rate, a product of bone strain rate and gradient,

but does not provide a mechanism for detection of strain magnitude. Such a

mechanism is necessary for bone modelling to adapt to loads, because strain

magnitude is an important determinant of skeletal fracture. Using strain

gauge data from the limb bones of amphibians, reptiles, birds and mammals,

we identified strong correlations between strain rate and magnitude across

clades employing diverse locomotor styles and degrees of rhythmicity. The

breadth of our sample suggests that this pattern is likely to be a common feature

of tetrapod bone loading. Moreover, finding that bone strain magnitude is

encoded in strain rate at the tissue level is consistent with the hypothesis that

it might be encoded in fluid-flow rate at the cellular level, facilitating bone

adaptation via mechanotransduction.
1. Introduction
The mechanical loading of bones is a potent stimulus affecting adaptive bone

modelling [1]. Because high strain magnitudes can increase the probability of a

detrimental bone fracture [2], it has been hypothesized that bone adaptation via

modelling should serve to decrease strain magnitudes in areas exposed to high

loads [3–6]. Available data suggest that bone formation in a range of vertebrate

taxa and bones is correlated with several stimuli, including strain gradients [7],

strain magnitudes [8–14] and strain rates [15–18]. However, many of these

studies were conducted using artificial loading regimes, and do not rely on the

bone strain profiles experienced by animals during natural, unrestrained terres-

trial locomotion and feeding. Because multiple tissue-level strain stimuli are

capable of driving bone modelling, there is ambiguity as to which of these stimuli

(or their combinations) leads to the initiation of mechanotransduction at the cel-

lular level. In sum, it is not clear how osteocytes detect local differences in

tissue-level strain magnitude, making it unclear how local changes in bone

stress and strain magnitudes can elicit bone modelling responses [1,19].

Mechanistic modelling studies suggest that strain magnitudes might be high

enough to directly excite osteocyte cell bodies within their lacunae [20,21]; cell-

level strains greater than 5000 m1 are required to excite osteocytes in vitro [22].

However, tissue-level principal strain magnitudes do not regularly surpass
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4000 m1 either for limb bones during vigorous locomotion [23]

or for the jaws during feeding [24]. Furthermore, it has recently

been shown that the osteocyte cell processes (which are housed

within canaliculi), rather than the osteocyte cell bodies, are prob-

ably responsible for initiating the mechanosensory response

[25]. Therefore, it is unlikely that coupling of osteocyte defor-

mation to local bone deformation directly induces the

intracellular response of osteocytes to tissue-level bone strain.

In contrast to the lack of mechanistic links between bone

adaptive responses and bone strain magnitudes, dynamic

loading provides a mechanism for strain amplification at

the cellular level by inducing fluid flow through the bone’s

lacunar–canalicular porosity [26]. The cell membranes of

the osteocyte processes are anchored to the canalicular wall

by multiple tethering proteins that span the pericellular

matrix [27]. Theoretical mechanotransduction models suggest

that fluid flow in this matrix generates high drag on the

tethering elements [28,29], which generates radial (hoop)

strains in the osteocyte processes’ cell membranes [29].

These strains have further been proposed to relate directly

to the tissue-level modelling response [30]. In this way,

models predict that interstitial fluid flow through a bone’s

lacunar–canalicular porosity is able to generate more than

five times greater strain at the cell membrane than is required

to elicit an intracellular response [29].

Mechanotransduction models also propose that the magni-

tude of drag experienced by the tethering elements increases in

direct proportion to the velocity of fluid flow through the cana-

liculi [28]. Turner et al. [17] analogized compact bone with a

water-soaked sponge and argued that the velocity of a bone’s

interstitial fluid will be related to the rate at which the bone

experiences tissue-level mechanical strain. Turner et al.’s ana-

logy has been supported experimentally in studies that have

found a bone’s streaming potential, which is caused by intersti-

tial fluid flow, to increase with loading frequency [17,31–33].

Previous studies have also suggested that the velocity of inter-

stitial fluid flow through the canaliculi is related to strain

gradient [7], which is ultimately influenced by strain magni-

tude. However, numerous studies have found that new bone

formation is directly proportional to strain rate when strain

magnitude is held constant [15–17]. Drawing from these

studies, it appears that large strain magnitudes are not capable

of initiating bone modelling unless they are coupled to large

strain rates [18].

Consideration of the data summarized above reveals a

paradox. Although organisms would benefit from a mechan-

ism linking adaptive bone modelling to changes in strain

magnitude, the mechanism for detecting strain magnitude

at the tissue level is unclear. Moreover, if the dynamic load-

ing model provides a cell-based mechanism for modelling

bone form, what is the selective advantage of linking adap-

tation in bone form to strain rate? Finally, it is unknown

how the two potent tissue-level bone strain stimuli capable

of inducing bone modelling—strain magnitude and strain

rate—are related to each other during natural, unrestrained

terrestrial locomotion. Based on our previous findings that

bone strain magnitude is significantly correlated with strain

rate in the tetrapod feeding system [34,35] and in the derived

locomotor system of the river cooter turtle [23], we hypo-

thesized that limb bone strain magnitude is highly correlated

with strain rate, providing a link between tissue-level strain

magnitudes and cellular-level fluid-flow rates. To test this

hypothesis, we analysed bone strain data from a variety of
tetrapod species, limb bones and locomotor behaviours to

determine whether variation in strain magnitude is highly

correlated with variation in strain rate.

Strain magnitude could be increased by increasing strain

rate while load duration is held constant, increasing load dur-

ation while strain rate is held constant, or some combination

of the two [34]. Evidence of modulation of strain magnitude

via loading duration comes from correlations between muscle

activity duration and increasing functional demands on the

musculoskeletal system. For example, the lizard Chamaeleo
calyptratus adapts to increased incline, which is associated

with an increased power requirement [36], by increasing

EMG amplitude and activity duration of the gastrocnemius

and tibialis anterior muscles with no associated change in

kinematics [37]. Furthermore, EMG burst duration, relative

to undulatory cycle time, increases in anguillid eels during

locomotion across land, which probably requires increased

force production compared with aquatic locomotion [38].

Muscle contraction places loads on associated skeletal

elements [39–41] and, in the hindlimb, muscle contractile

activity is correlated with peak bone strain magnitude [42].

Therefore, increases in the duration of muscle activity (load

duration) may lead to increased bone strain magnitudes.

However, evidence that strain magnitude is likely to be

modulated via changes in load rate across a wide range of ver-

tebrates comes from observations that the locomotor and

feeding systems of many tetrapods operate highly rhythmically

[35,43]. Low variation in locomotor cycle duration implies that

variation in forces and strains must be accommodated through

variation in load rate rather than in load duration. Moreover,

muscle force modulation during locomotion occurs through

the orderly recruitment of motor units [44–46], whereby

increased muscle force generation is achieved by recruitment

of progressively larger and faster motor units. This provides a

motor-control mechanism to explain how rate modulation of

limb bone loading occurs [34].

This study is the first to test whether the magnitude of

tissue-level bone strain is encoded in the rate at which the

bones are loaded across a wide range of vertebrate taxa,

bones and locomotor behaviours. This would indicate that the

way that force is modulated in musculoskeletal systems

during organism-level behaviours (rate modulation) encodes

the magnitude of tissue-level strains in a manner that cellular-

level processes can and do detect. The strain rate encoding

of strain magnitude across a phylogenetically broad group of

tetrapod species and two different functional systems (feeding

and locomotion) would suggest that this is a fundamental

mechanism of functional skeletal adaptation in tetrapods.
2. Results
(a) Bivariate analyses
Regardless of strain type (11 principal strain, 12 principal strain

and shear strain), the absolute magnitude of strain was always

significantly positively correlated with strain rate (slopes ran-

ging from 0.017 to 0.757; see M–R rows of electronic

supplementary material, tables S1–S3) and only sometimes

correlated with load duration across all species and limb

bone elements (figure 1; electronic supplementary material,

tables S1–S3). By contrast, 11, 12 and shear strain magnitude

were only correlated ( p , 0.05) with load duration in three of

nine, four of nine and four of six species, respectively. On

http://rspb.royalsocietypublishing.org/
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average, strain rate explained 49.29+18.75% (mean+ s.d.)

more of the variation in strain magnitude than load duration.

When strain magnitude was correlated with both strain rate

and load duration, strain rate always explained more of the

variation in strain magnitude than load duration (figure 1).

Individual effects were evident in the bivariate analyses both

qualitatively and quantitatively (figure 2; electronic sup-

plementary material, table S4). However, individual trends

mirrored collective trends for the species, showing more (and

stronger) correlations between strain magnitude and strain

rate, compared with load duration (figure 2).
(b) Multivariate analyses
Multivariate analyses were conducted to determine which

independent variable explained more strain magnitude vari-

ation when individual effects and interaction effects between

the independent variables (strain rate and load duration)

were taken into account (figure 3; electronic supplementary

material, tables S1–S3). The summary of fit for each multiple

regression always yielded r2 . 0.75, with 21 of 23 fits having

r2 . 0.90. Strain (11, 12 and shear) magnitude was always sig-

nificantly correlated with both strain rate and load duration.

Strain rate b coefficients (standardized partial slope) were

1.05–2.06 (11), 1.09–2.03 (12) and 1.06–1.86 (shear) times

higher than load duration b coefficients (figure 3). The pres-

ence of a larger b coefficient for strain rate suggests that

variation in this factor always explains more strain magnitude

variation than does load duration.

Interaction effects between strain rate and load duration

were always significant for each species’s regression of 11, 12

and shear strain. However, the variance inflation factors

(VIFs) for strain rate and load duration were usually low

(below 3.0), suggesting minimal effects from multicollinearity,

and independent effects of strain rate and load duration on

strain magnitude. With one exception (12 strain data from the
radius of the goat Capra hircus), the weak relationship between

strain rate and load duration was negative.

(c) Multivariate analyses accounting for speed
In order to test whether the relationship between strain magni-

tude and strain rate is maintained across changes in locomotor

speed, multivariate analyses were conducted on strain data

from the tibiotarsus of the emu (Dromaius novaehollandiae) at

duty factors of 0.65, 0.55 and 0.40 (figure 4; electronic sup-

plementary material, table S5–S7). Regardless of duty factor,

11 and 12 strain magnitudes were always significantly corre-

lated with both strain rate and load duration. However, as in

our previous analyses, the b coefficient for strain rate was

always larger than that for load duration (figure 4). The

strain rate b coefficients from regressions of the 11 data were

1.50, 1.78 and 1.28 times larger than the load duration b coeffi-

cients at duty factors of 0.65, 0.55 and 0.40, respectively. For the

12 data regressions, the strain rate coefficients were 1.72, 1.32

and 2.03 times larger than those for load duration at these

same duty factors.

Emu tibiotarsus data were further pooled into two sets

(one for 11 and one for 12) that each included all three duty

factors. In each case, the strain rate b coefficient was greater

than the load duration b coefficient (figure 4) by a factor of

1.23 for 11 and 2.06 for 12. In order to fully account for the

effects of duty factor, a second multivariate analysis was con-

ducted that included cycle duration (as a proxy for speed) as

an independent variable. The results remained consistent

with the previous analysis. In the latter analysis, strain rate

and load duration b coefficients changed from 0.83 to 0.81

and from 0.68 to 0.66 for the 11 dataset, and from 1.01 to

0.99 and from 0.49 to 0.47 for the 12 dataset (figure 4).

Thus, inclusion of cycle duration in the regression model

only increased the ratio of the strain rate b coefficient

to load duration b coefficient by a factor of 0.007 for the 11

dataset and 0.031 for the 12 dataset.
3. Discussion
In the tetrapod feeding system, bone strain magnitude is

significantly correlated with the rate at which that strain devel-

ops [34,35]. Such a correlation also has been identified in a

single study of a highly derived locomotor system (turtles)

operating at low speeds [23]. This study evaluated whether

this relationship holds more generally across the locomotor sys-

tems of a broader range of taxa and locomotor styles, and

whether strain rate or load duration explained more of the vari-

ation in strain magnitude across this sample. Our analysis of

locomotor strain data across diverse tetrapod species, limb

bones and locomotor styles shows that limb bone strain magni-

tude is always significantly correlated with strain rate, but not

always with load duration, and that strain rate (rather than load

duration) explains more variation in strain magnitude. Thus,

high correlations between strain magnitude and strain rate

are a general feature of tetrapod bone loading in locomotor

and feeding systems, whether in cyclic loading events (e.g.

mammal chewing; mammal, bird, turtle and alligator walking)

or in discrete loading events (e.g. frog jumping).

Our finding that tissue-level strain magnitudes are rate

modulated has particular salience in the context of the

fluid-flow mechanotransduction model for bone adaptation.

The fluid-flow model proposes that the magnitude of drag
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experienced by osteocyte tethering elements is directly pro-

portional to the velocity of interstitial fluid flow through

the canaliculi [28], which is in turn related to tissue-level

strain rate [17]. Consequently, the magnitude of the intra-

cellular response of osteocytes to drag imposed on the cell

process tethering elements and axial strains of integrins [29]

is directly influenced by the rate at which tissue-level strains

develop. However, until now, variation in tissue-level strain

rates has not been linked to variation in tissue-level strain

magnitudes, so it has not been clear how the modelling

response elicited by interstitial fluid flow could be linked to

the strain magnitudes that determine bones’ risk of failure.
Strong correlations between strain magnitude and strain rate

in both feeding [34,35] and a diversity of locomotor systems

(figure 5) provide a basis for hypothesizing such a link.

Because strain magnitude also partly determines the velocity

of interstitial fluid flow (via strain gradient), we further

hypothesize that a correlated increase in strain magnitude

and strain rate would help to prevent ambiguity in the encod-

ing of tissue-level strain magnitude at the cellular level through

fluid-flow velocity. In summary, our data are consistent with a

hypothesis that links tissue-level, in vivo bone loading regimes

during natural, unrestrained behaviours with theoretical, cellu-

lar-level models of mechanotransduction [28,29], in which

http://rspb.royalsocietypublishing.org/
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tissue-level strain magnitude is encoded at the cellular level by

tissue-level bone strain rates.

Bone is a viscoelastic material, with material properties

such as Young’s modulus increasing with increasing strain

rate [47]. Nonetheless, there is little indication that such pro-

perties would impact our conclusions. In this study, we found

that species-average strain rate ranged from 439 m1 s21 in

the tegu (Tupinambis merianae) to 18 966 m1 s21 in the emu

(D. novaehollandiae). However, available data suggest that

Young’s modulus only increases slightly over the three orders

of magnitude that bracket our range of in vivo strain rates [48].

For example, the Young’s modulus of the bovine femur

is 15.2, 17.2 and 17.9 GPa at strain rates of 1000, 10 000 and

100 000 m1 s21, respectively [48]. Thus, at a load of 50 MPa,

bovine femoral bone strain decreases from 0.00329 to 0.00279

at strain rates of 1000 and 100 000 m1 s21, respectively. These

strain-rate-induced differences in strain magnitude would

introduce an encoding error at the cellular level of approxi-

mately 15% (similar to the sensory noise level observed in

the visual system [49]) when strain rate spans three orders of

magnitude. This bracket of experimental strain rates encom-

passes a range of values approximately 80 000 m1 s21 greater

than the largest species-average rate calculated in this study.

The extremely high loads and strain rates that occur during

the infrequent performance of extreme behaviours might be

associated with an encoding error in strain magnitude at the

cellular level owing to the viscoelastic properties of bone, but

such error would cause strain magnitude to be overestimated,

rather than underestimated.

It is possible that rate modulation of bone strain magni-

tudes could encode information about loading frequency in

situations where strain magnitude is relatively invariant

because when strain magnitude is held constant, increases in

loading frequency are associated with increases in strain rate

[50]. Encoding of loading frequency might be advantageous

because fatigue loading is known to produce micro-cracks
and weaken bone [2,51,52]. However, we do not find this argu-

ment compelling because, although the initial loading cycles of

a series strongly influence bone formation [53], bone cells

rapidly accommodate to ‘routine loading signals’ [50,53],

suggesting that bone cells do not record a ‘memory’ of loading

frequency. During normal rhythmic locomotion, increases in

loading frequency within gaits are also associated with

increases in both strain magnitude [54,55] and (as shown

here) strain rate. Thus, although resistance to fatigue damage

is an important aspect of bone function, the evidence does

not support the suggestion that strain rate encoding of load

frequency is an important mechanism of fatigue resistance.

During rhythmic locomotion, stance phase and bone load-

ing duration decrease as locomotor speed increases, necessarily

resulting in increased ground reaction forces and bone strain

magnitudes [55]. Locomotion dynamics therefore almost

require that limb bone strain magnitudes are correlated with

strain rates and not loading durations. However, it is important

to point out that there is no necessary relationship between

strain magnitude and loading rate in those musculoskeletal

systems that do not support body mass and resist ground reac-

tion forces during cyclic activity. For example, the mammalian

feeding system displays high correlations between strain

magnitude and strain rate during rhythmic mastication,

despite the fact that body-mass dynamics are not an important

determinant of feeding-system dynamics [34].

Instead, common mechanisms of bone adaptation can be

linked to the orderly recruitment of motor units, which is an

important principle of motor control in both locomotor and

feeding systems [34,35]. In vertebrate locomotor and feeding

systems, as more force is required, small motor neurons,

which innervate small motor units consisting of slow twitch

fibres, are recruited first, followed by motor units with progress-

ively larger motor neurons and faster fibre types [56–68]. Force

modulation through orderly recruitment of motor units has sig-

nificant advantages for motor control, but it also makes rate

modulation of locomotor and feeding forces, and their associ-

ated strains, almost inevitable. The demonstration of orderly

recruitment of motor units in bony fishes [69] suggests that

rate modulation of force may be a widespread and ancient fea-

ture of vertebrate musculoskeletal systems. Thus, the evolution

of bone adaptation mechanisms that took advantage of this

organization may not be surprising.
4. Material and methods
All bone strain data used in this study were recorded as part of unre-

lated prior studies. Bone strain data were analysed from a variety of

tetrapod species, different limb bones and different locomotor beha-

viours: turtle (Pseudemys concinna) femur [23]; opossum (Didelphis
virginiana) femur [70]; chicken (Gallus gallus) femur [71]; goat

(C. hircus) radius [72]; emu (Dromaius novaehollandiae) tibiotarsus

(TBT) and femur [73]; tegu (T. merianae) femur [74]; alligator

(Alligator mississipiensis) humerus [75]; frog (Lithobates catesbeiana)

femur [75]. The data were appropriate for the current study because

they represented uninterrupted sequences of locomotion consisting

of at least five cycles in all species except the frog (L. catesbeiana),

which exhibits discontinuous locomotion in which each jump is

a discrete loading event. A subset of the data (the TBT of

D. novaehollandiae) was analysed across different speeds.

All data analysed in this study were collected from rosette

strain gauges attached to the surface of each animal’s bone, in

accordance with standard methods [76]. Data were sometimes

sampled at different rates across the original source studies,

http://rspb.royalsocietypublishing.org/
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due to interspecific differences in typical locomotor speeds.

Slight variations were also present in the precise locations of

each gauge relative to the neutral axis among individuals

within the same study. However, there were no major differences

in strain gauge application or data collection methods among the

original studies that were the sources of these data, facilitating

our comparisons in this analysis. A summary of the strain data

from each study, including the sampling rate, number of individ-

uals and step cycles analysed per species, can be found in

electronic supplementary material, table S8.

Strain data were analysed using a custom MATLAB (Math-

Works, Natick, MA, USA) routine by J.I.-D., who extracted the

following variables from each locomotor (step) cycle: peak

strain magnitude, duration of strain development (load dur-

ation), the rate of strain development (strain rate) and in a

subset of the data, step cycle (stance þ swing) duration. Calcu-

lations and equations for bone strain variables followed

previously published methods for mandibular strain [34]. It is

rare that bone strain returns to a magnitude of zero during the

swing portion of a step cycle because of inertial and muscular

forces during limb movement. Therefore, variables were evalu-

ated relative to 25% of peak strain in order to focus analyses

on the major loading event that occurs during the step cycle

(stance). Load duration was calculated as the time between

25% of peak strain (the time at which 25% of peak strain magni-

tude was reached during loading) and peak strain. Strain rate

was calculated as the average rate of strain development between

25% of peak strain and peak strain magnitude. Step cycle dur-

ation was estimated as the average time from the preceding

strain peak to the current peak, and from the current peak to

the following peak.

(a) Statistical analyses
To determine whether strain magnitude in the limb bones of

tetrapods is modulated by changes in strain rate and/or load

duration, bivariate correlations were calculated between strain

magnitude (11, 12 and, in some cases, shear) and both strain rate

and load duration within each species. For each analysis,

significance was assessed relative to the critical value of p , 0.05.

To determine which of the independent variables (strain rate or

load duration) had the greatest influence on the dependent vari-

able (strain magnitude) within each species, we also performed a
restricted maximum-likelihood (REML) linear mixed-model mul-

tiple regression. Since load duration was also used to calculate

strain rate, strain rate was crossed with load duration in every mul-

tiple regression model to account for interaction effects. The

random effects from individuals, trials and cycles were also

accounted for in each multiple regression model. All variables

were standardized by conversion to z-scores, which allowed the

model to produce b coefficients. b coefficients are standardized

regression coefficients that express the relative effects of the

independent variables on strain magnitude. In each multiple

regression, the VIF was calculated to assess the degree of multicol-

linearity between the independent variables. The 11 strain data from

the opossum (D. virginiana) did not meet the assumptions of the

model (normally distributed), and therefore were not used in the

multivariate analysis. All statistical analyses (multivariate and

bivariate) were performed in JMP v. 9.0.1 (SAS, Cary, NC, USA).
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Institutional Animal Care and Use Committee guidelines. See orig-
inal papers for more information; citations can be found in the
electronic supplementary material, table S8.
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