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Abstract

We present a new particle image correlation technique for resolving nanoparticle flow velocity
using confocal laser scanning microscopy (CLSM). The two primary issues that complicate
nanoparticle scanning laser image correlation (SLIC)-based velocimetry are (1) the use of
diffusion-dominated nanoparticles as flow tracers, which introduce a random decorrelating error
into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which
introduces a bias error. To date, no study has quantified these errors or demonstrated a means to
deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation
(RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement
an ensemble RPC instead of using an ensemble standard cross-correlation, and develop a SLIC
optimal filter that maximizes the correlation strength in order to reliably and accurately detect
the correlation peak representing the most probable average displacement of the nanoparticles.
Secondly, we developed an analytical model of the SLIC measurement bias error due to image
scanning of diffusion-dominated tracer particles. We show that the bias error depends only

on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use
this model to correct the induced errors. We validated our technique using synthetic images
and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our
technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the
images tested in this study. Moreover, our optimized RPC filter reduces the number of image
pairs required for the convergence of the ensemble correlation by two orders of magnitude
compared to the standard cross correlation. This feature has broader implications to ensemble
correlation methods and should be further explored in depth in the future.

Keywords: nanoparticle, particle image velocimetry, microfluidics, Brownian motion,
cross-correlation, molecule transport, confocal microscopy
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Ur Velocity of the fluid

Us Velocity of the laser scanner
D Diffusion coefficient gm? jus~!
PIV  Particle image velocimetry

GCC  Generalized cross correlation

RPC  Robust phase correlation

SLIC  Scanning laser image correlation

SLICR Scanning laser image correlation—robust phase
correlation

RICS Raster image correlation spectroscopy

FCS  Fluorescent correlation spectroscopy

CLSM Confocal laser scanning microscopy

SNR  Signal-to-noise ratio

Introduction

Scanning laser image correlation (SLIC) [1] is an image-based
technique for measuring the velocity of flow-tracer particles
suspended in a liquid using confocal laser scanning micros-
copy (CLSM). The fundamental operating principle of SLIC
is equivalent to that of traditional particle image velocimetry
(PIV): a sequence of images is acquired with a known time
separation, and the displacement of particle patterns between
consecutive images is measured using cross-correlations.
However, the specialized imaging arrangement of CLSM
introduces recording artifacts that preclude the straightfor-
ward application of PIV algorithms to CLSM images. The
objective of this work is to identify these specific artifacts,
quantify their effects on the accuracy of correlation-based
velocity measurements, and subsequently develop and dem-
onstrate algorithms that mitigate them.

PIV is well developed for measuring fluid velocity fields in
planar or volumetric regions of interest [2, 3], and its exten-
sion to light microscopy (uPIV) has been widely and suc-
cessfully adopted for interrogating micro-scale flows [4, 5].
However, the diffraction-limited optics of light microscopy
limit the spatial resolution of traditional 4PIV measurements
to approximately 0.1 um. This precludes the use of pPIV for
interrogating nanoscale flow and subcellular kinematic pro-
cesses such as nanoparticle advection and diffusion across
extra-cellular matrices or the transport of fluorescently labeled
molecules across cell membranes.

In contrast, confocal microscopes overcome the diffraction
barrier by collecting light through a small pinhole placed in
line with the objective lens. The pinhole images a single point
in the specimen, and rejects out-of-focus light by blocking
rays that do not emanate from the plane of focus. 2D images
are formed point-by-point by scanning the pinhole/objective
over the region of interest. This arrangement enables spatial
resolution on the order of nanometers [1, 6]. On this basis,
CLSM is often a preferred technique for imaging small-scale
features of fixed cells [6-9].

However, the high spatial resolution of CLSM comes at the
expense of temporal resolution. The formation of images by
scanning is slow compared to bright field arrangements and

introduces ‘motion blur’ when imaging specimens that move
with velocity similar to that of the scanner. For example, par-
ticles flowing in the same direction as the scanner will appear
stretched. CLSM is therefore not widely used to interrogate
many of the dynamic transport processes of interest to cellular
biology.

Despite this shortcoming, Rossow et al used PIV-like algo-
rithms to measure the velocities of flow tracer particles from
1D CLSM images (i.e. single line-scans) [1]. In this study,
the researchers captured CLSM images of 0.1 pm particles
flowing in a microfluidic channel, and in vivo in the circula-
tory systems of transparent embryonic zebra fish. However,
assessing the accuracy of their results is difficult because no
estimates of error or uncertainty were reported. Moreover,
their report does not address the two major sources of error to
which correlation-based velocity measurements from CLSM
images are subject: a random error due to the Brownian
motion of small tracer particles, and a bias error due to the
formation of images by progressive scanning.

The positions of tracer particles in successive CLSM
images are related by the velocity of the fluid as well as a
random displacement due to Brownian motion. As the time
between image pairs increases, these random displacements
cause the particles’ positions to deviate from those of the fluid
pathlines. Such a stochastic process introduces a random error
into the cross-correlation based velocity estimate. Moreover,
because the images of multiple particles contribute to each
cross correlation, and because their random displacements are
by definition uncorrelated, this effect manifests as randomly
distributed peaks in the cross correlation, as illustrated in
figure 1.

The deleterious effects of diffusion on the cross correla-
tion are not unique to CLSM images, but similarly affect any
system that images tracer particles with significant diffusion.
Typically, these effects are dealt with by summing the correla-
tions of many pairs of images so that the zero-mean errors of
diffusion average out, and the remaining correlation peak is
interpreted to represent the best estimate of the time-averaged
displacement of the tracer particles [3, 10]. This summing of
correlations is known as the ‘ensemble correlation’, which has
been shown to reduce random error in micro particle image
velocimetry (pPIV) experiments compared to single-pair
correlations [2, 5]. The accuracy of the ensemble correla-
tion-based displacement estimate depends on the number of
image pairs used, or more appropriately, the total number of
pixels contributing to the correlation. Therefore, the number
of frames (defined for this study as the number of horizontal
single pixel line scans) is critical for accurate velocity meas-
urements using diffusion-dominated particles as flow tracers.

In addition to the effects of diffusion, a second significant
error source in SLIC arises from the formation of images by
laser scanning. In SLIC, a laser beam scans in one direction
across the imaging domain, and light is collected from one
point at a time (figure 2(a)). Unlike traditional PIV images,
a CLSM image does not represent an instantaneous snap-
shot of the entire flow field. Rather, each pixel is recorded
sequentially in time, with a delay between pixels that is usu-
ally significant compared to the velocity of the tracer particles.
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Figure 1. Schematic of expected contributions of Brownian motion to particle motion in flow, in which correlation quality decreases while

imaging small-sized nanoparticles.
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Figure 2. (a) Illustration of single line scanning and (b) presence
of bias errors at a particular ratio of the scanning and fluid
velocities. This example illustrates the bias error alone, without the
contributions of random error due to diffusion.

Because of this, the images of the particles within CLSM pho-
tographs (and their positions between recordings) are distorted
according to the ratio of the particle velocity to the CLSM
scanning velocity. As illustrated in figure 2, this effect mani-
fests as a bias error in the velocity measurement. Specifically,
the measured displacement is biased toward zero as the ratio
between the particle and scanning velocity approaches unity,
while the limiting case of infinitely fast scanning velocity
is tantamount to traditional ‘snapshot’ imaging. Figure 2(b)
illustrates this bias error with the example of a 1D line scan
(figure 2(a)) acquired with a single particle flowing under con-
stant velocity.

A protocol for minimizing both the random and bias
errors to which SLIC-based flow velocimetry is subject will
enable the development of more robust systems for using con-
focal microscopy to characterize nanoscale flow kinematics.
Currently, however, no such protocol exists. Here, we propose

a novel processing method that combines the robust phase
correlation (RPC) [11, 12] and ensemble correlation [4, 5]
with SLIC [1], and develops and implements a framework for
bias error correction to overcome these limitations.

Robust phase correlation (RPC)

The RPC algorithm extends traditional PIV by applying
a filter to the generalized cross correlation (GCC or ‘phase
correlation’) in the Fourier domain [11-13]. The GCC was
first utilized by Wernet [14] for PIV images, demonstrating
the effect of the symmetric phase only filtering. Successively,
the RPC filter was improved as a new GCC filter not only for
planar PIV, but also for pPIV using light microscope images
that exhibited comparatively greater background noise and
lower SNR than traditional measurements [11, 15, 16]. This
suggests that the spectral characteristics of those light micro-
scope images were to some extent congruent with the theor-
etical model of RPC. However, the image formation process
of CLSM is significantly different from that of traditional
cameras (illustrated as ‘motion blur’), and it is therefore likely
that their spectral characteristics, too, will differ. Nonetheless,
previous results suggest that an RPC-like filter, of yet undeter-
mined width, will likewise improve the correlation SNR and
reduce errors in CLSM velocimetry.

Bias correction

The particle image positions in CLSM are influenced by three
primary factors: fluid velocity (Ur), scanner velocity (Uj),
and random displacement (X’) caused by Brownian motion.
Equation (1) represents the positions of 1D confocal images
of a tracer particle in a uniform, unidirectional flow. The
Xy p is the position in the image of the pth particle from the
recorded confocal line scan (fth frame). X(}’p refers to the ini-
tial position of the pth particle in space at the beginning of the
fih frame, and ¢/, is the time elapsed between the beginning
of the fth frame and the moment the scanner arrives at the
position of the pth particle (i.e. Xy ,/Uy). X}’p represents the
random displacement of the pth particle during the interval
tr,p- Subsequently, the same definition is assigned for the next
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consecutive position and time variables used for each consec-
utive frame (f=1,2,3 ...).

Xrp=X%,+ U tr, + X, (1)

Subsequently, the displacement of particles between an image
pair is given by equation(2):

Xpotp = Xpp =X = Xjp+ Ur-Uperp = 110+ X1, = X
2
The difference Xy, — Xy, will be referred to as AXy , and
Aty = ty41,p — trp, which is the interval between the times
at which the scanner reaches the position of the pth particle
in subsequent frames (AXTC’) Initial positions X? p X(},p

(referred as AXOf,p) can be expressed alternatively as equa-
tion (3), At is the recorded elapsed time per frame from

CLSM and X%, is the random displacement that occurred
between the beginnings of frames fand '+ 1.

0 0
AX;,=Ur- At + X}, (3)

Substituting equation (3) to equation (2), we get

AXs

S

AXf,p =Us- At + U~ + X/f+1,p - X/f,p +X?,lp 4

Additionally, the position of the particle in the image can also
be expressed in terms of the laser scanning velocity (Us) which
are represented on equations (5) and (6) below.

Xep=Us-trp (5)

AX]ZP =U- Al‘f,p (6)

The unknown variables from equation (4) are Ur and the com-
bined random displacement, X'; ;,—X; +X Of,’p which
occurred over three different time instances. In terms of mea-
surements, we can regard the ensemble averaged AX; , as the
most probable displacement of particles estimated by aver-
aging cross-correlation of a confocal scanned image pair over
total number of particles (g) per each frame with a sufficiently
large total number of frames (m), given by equation (7).
m

q
ax, =315 Ay, ™

m4=q

Equation (8) below represents the ensemble average of each
term.

AXy,

S

AXyp=Ur- At + Ut - +X}+1,p_le,p+X%lp ®)
The ensemble average of the random displacements

iy — X, +X Of’ ', will yield zero, due to Brownian motion
which can be modeled as normally distributed variable with
zero mean [17]. Subsequently, we get equation (9) with one
unknown variable Us

AXyp
AXf’p:UpAl‘i‘ Ur - .

©)

S

After rearranging, the fluid velocity U can now be decoupled
from the measured ensemble averaged displacement AXy
which consists of the bias error due to the effect of scanning,
given by equation (10)

AXJ‘LD

"7 (At t AXp iU (10)

Processing algorithm

Equation (10) implies that the underlying fluid velocity can
be accurately estimated when measurements of the tracer
particles’ displacements are statistically converged and no
longer subject to significant random fluctuations. Hence, it
is necessary that the statistical image correlation converge
within a finite number of ensembles. In order to achieve
that we develop a processing algorithm (figure 3), referred
to thereon as SLICR (SLIC with RPC), which differs from
conventional ensemble SCC and RPC in terms of two spe-
cific steps. First, while the original RPC filter was based on
a theoretical model of digital image formation, we instead
apply a modified Gaussian-shaped spectral filter whose width
(standard deviation) was chosen to be optimal for minimizing
error and accelerating convergence in ensemble correlations
of computer-generated CLSM images. Secondly, we use the
previously described analytical model of CLSM image forma-
tion to account for the measurement bias error due to the scan-
ning process. A complete description of our SLICR algorithm
follows below.

The details of the first five steps of our processing algo-
rithm involving a Gaussian apodization filter, Fourier trans-
forms (FTs) and ensemble correlation are discussed in detail
by Eckstein et al [12], which yields the raw (unfiltered) phase
correlation. The raw phase correlation is then multiplied by a
Gaussian-shaped weighting function (the ‘RPC’ filter) whose
value is unity at the zero-wavenumber pixel and exponentially
decays at larger wave numbers. The only parameter for this
filter is its standard deviation (or ‘width’), and the method by
which we define the standard deviation is described later. We
refer to this filtered phase correlation as the ‘RPC’. After fil-
tering the phase correlation, we calculate its inverse FT, which
yields the characteristic ‘peak’ whose position indicates the
most probable displacement of the image pattern (subject to
the previously described bias error). We estimate the sub-pixel
location of the correlation peak as the maximum value of the
continuous Gaussian function that best fits the points sur-
rounding it. Finally, we apply the previously described bias
correction to this sub-pixel displacement, which yields our
best estimate of the time-averaged displacement of the parti-
cles that were photographed.

Determination of the RPC filter width

In the absence of an analytical model of the noise char-
acteristics of CLSM imaging, we optimized the width of
the Gaussian RPC filter using Monte-Carlo error analysis
of computer-generated CLSM line scans (‘images’) of the
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Figure 3. Our SLICR processing algorithm for measuring time-
averaged velocity of particles imaged by confocal microscopy.
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steady unidirectional flow of tracer particles (the image gen-
eration procedure is described subsequently). We randomly
varied the ratio of the particle velocity to scanner velocity (the
‘velocity ratio’) from 0.01 to 0.1, and varied the rate of dif-
fusion from 10 to 60 pixels*/frame. Each velocity measure-
ment was derived from of an ensemble correlation of 2 x 10°
pixel counts, which we determined was adequate for all mea-
surements to converge. After calculating the raw (unfiltered)
phase correlation of each ensemble, we parametrically varied
the standard deviation of the Gaussian RPC filter from zero
(essentially a Dirac delta function) to the width of the cor-
relation (i.e. nearly flat). We assessed the measurement error
for each filter width as the absolute difference between the
ground truth particle displacement and the SLICR-measured
displacement after bias correction. As shown in figure 4, our
analysis indicates that error was minimized for a filter diam-
eter of about 3.3 x 10! pixels (equivalent to the filter standard
deviation of about 18 pixels).

—— Error Magnitude

Error Magnitude (pixels)

10" 107 10
RPC Filter Diameter (pixels)

Figure 4. Relationship between RPC filter diameter and
displacement error magnitude, as determined by Monte-Carlo
analysis of synthetic computer generated confocal microscope
images of tracer particles under steady unidirectional flow.

Assessment of SLICR algorithm performance

Synthetic image generation

CLSM images of particles under unidirectional flow were
rendered by sampling synthetic particle flow fields pixel-by-
pixel, scanning horizontally, while continuously advecting
the underlying tracer particles. The interrogated flow field
was simulated over a 2D domain, and was seeded with tracer
particles with random initial vertical and horizontal coordi-
nates. The domain was discretized into 1000 horizontal inter-
rogation regions (or ‘pixels’), each of which represented a
single station at which the CLSM scanner sampled the field.
Images were formed progressively by sampling the flow field
at each pixel, whose resulting brightness was determined by
integrating the contributions of nearby Gaussian-shaped par-
ticles according to the theory of Adrian and Olsen [18]. The
positions of the particles were updated between integrations
according to a prescribed uniform horizontal velocity (in the
direction of scanning) as the scanner progressed. In our simu-
lations, the fluid velocity was varied from O to 100 pixels per
line (by adjusting the fluid and scanner velocity). The time
elapsed between each pixel integration corresponded to the
input scanner velocity divided by the size of the domain.
Additionally, diffusion was modeled as pseudo-random dis-
placements in the horizontal and vertical directions. This
pseudo-random displacement was generated from a normal
distribution with a mean of zero and a standard deviation of
o = £++2-D- 7, where D is the Stokes—Einstein diffusion
coefficient [19] in zm?/uus and 7 is in the elapsed time per frame
in seconds. We chose a diffusion coefficient of 70mm? s~!
and 4.9mm? s~ for modeling 7nm and 100nm particles,
respectively. The particles were modeled to be suspended in
water at 25 °C, which allowed the particles to move freely
due to diffusion and advection. In our simulations, a single
horizontal line was scanned repeatedly to match the behavior
of the experimental apparatus described later. Uncorrelated
Gaussian noise was added to each pixel to represent the
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Figure 5. Schematic of the experimental setup used to obtain confocal microscope images of nanometer-sized tracer particles flowing in

water through a microchannel.

effects of imaging noise, with a mean value of 0 and standard
deviation of 10% of the pixels’ saturation intensity. To main-
tain consistency between our simulations and experiments,
we simulated particle diameters of 7nm and 100nm; these
corresponded to particle image diameters of 2 and 6 pixels,
respectively. These particle image diameters (D, = J2 - Dy)
were calculated by using the autocorrelation diameter (Dy)
measured from the experimental images obtained with
nanoparticles [10].

Micro-channel flow experiments

To evaluate the performance of our SLICR algorithm on
real data, we collected confocal images of nanometer-sized
tracer particles suspended in water flowing through a plastic
microfluidic channel of rectangular cross section (u-Slides I
Luer, ibidi Inc). Figure 5 illustrates the overall experimental
system and imaging location. The dimensions of the channel
were O.lmm (depth) x Smm (width) x 50mm (length).
Polystyrene microspheres (0.1 m diameter; Fisher Scientific)
and CdSe/ZnS quantum dots (7 nm diameter; Sigma-Aldrich,
694614) were used as tracer particles. The channel was filled
with a suspension of particles in water with a seeding density
of 1 mg/100ml. The volumetric flow rate through the channel
was controlled by a syringe pump (Harvard Apparatus), and
ranged from 0.005 to 0.5 1 s~!. The interrogation region was
located near the center of the channel (x and z-axis), with 11
different positions (44, 40, 30, 20, 10, 0, —10, —20, —30, 40
and —44 pm) spaced along y-axis (figure 5). The nominal
expected flow velocities at the interrogation spot ranged from
10 to 1000 pm s~ 1.

A Nikon A1R scanning laser confocal microscope (Nikon
Corporation, Tokyo, Japan) was used to photograph the flow
through the microfluidic channel. The channel was viewed
through a 60 x objective lens (numerical aperture NA = 1.4,
working distance of 0.2 mm), and illuminated by an argon ion
laser (561 nm wavelength). The scanned path was a line 512
pixels long, oriented approximately parallel to (and in the
same direction as) the mean flow. The dwell time at each pixel
(exposure time per pixel) was selected between 2.2—12 us,

with an image magnification of 5.0 x 1072 um per pixel.
Each trial consisted of 10000 consecutive scans along the
same path. The scan time for each line ranged from 0.1 to
7.7ms, which includes additional time pausing at the begin-
ning and end of each line. The spatial resolution of the auto-
mated traverse (Z step size) was 1.3 x 107! um. The total
image acquisition time ranged from 20 to 120s for each line
measurement.

Quantification of error

For both synthetic and experimental images, we assessed the
performance of our algorithm using two metrics. First, we
quantified the number of line scans required for convergence
of the displacement estimate using our SLICR compared to
the standard cross correlation (SCC) used in SLIC. Our crite-
rion for convergence was set that the velocities across two suc-
cessive ensemble converge within 0.1 pixels. The upper bound
limit of 0.1 pixels was referenced from the standard deviation
of 1000 displacement estimates (instantaneously cross-corre-
lated) from synthetic CLSM images generated with no effect
of diffusion. For the SLICR algorithm, we used the previously
optimized RPC filter diameter of 3.3 x 10! pixels. This metric
depended only on the behavior of the correlations themselves,
and therefore isolated the effects of the RPC filter from those
of the bias correction model.

Secondly, we compared the accuracy of converged
SLICR-calculated particle velocity estimates with and
without application of our bias correction model. For these
tests, we parametrically varied the ratio of fluid velocity
to scanning velocity from 2.0 x 1073 to 1.1 x 10~ (for
synthetic data) and 1.0 x 1072 to about 1.1 x 10~ (for
experimental data). Our metric of accuracy was the abso-
lute difference between the ground truth velocity of parti-
cles and the SLICR-measured velocity. For synthetic data,
the ground-truth velocity was taken as that prescribed in
the simulations. For experimental data, we estimated the
ground-truth velocity analytically using the equation for
fully developed plane Poiseuille flow, evaluated at the meas-
urement locations that we interrogated.
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As an additional point of comparison, we used SCC and
SLICR to measure the velocity profile of the channel flow by
performing measurements at eleven locations evenly spaced
in the depth direction between +50 pm of the channel center-
line. Error was quantified as the difference between the meas-
ured and theoretical velocity at each position.

For all converged measurements using experimental
images, we estimated the uncertainty of the calculated error
by propagating (via the Taylor series expansion method) the
known elemental sources of error in our experiment, and the
RMS of the measured velocity, through the error equation.
The elemental sources of error we considered were the volu-
metric flow rate delivered by the syringe pump, the physical
location of the interrogation region, and the dimensions of the
microfluidic channel, whose values were used to calculate the
Poiseuille flow velocity profile. The variation of the fluid vis-
cosity was not included in the uncertainty calculation due to
the absence of viscosity measurements of the distilled water,
which was estimated to be marginal relative to other manufac-
turing tolerances.

Results

Convergence of measurements: synthetic images

Figure 6 shows a representative comparison of convergence of
ensemble SLICR and SCC velocity estimates, for the measured
velocity normalized by the expected velocity (corresponding to
the measurement with the fixed input velocity of 1000 pm s~}
with dwell time of 2.0 us). The secondary axis was created
so the ensemble total pixel counts can also be associated with
a typical digital image size, such as 512 x 512 pixels (a total
of 2!® pixels). Whiskers indicate the 95% confidence interval
about the mean velocity ratio (40 data points are shown in the
plot in order to distinguish markers and whiskers for each case
across large range of ensemble pixel counts on log-scale). The
expected velocity (blue) was estimated by using equation (10)
with known input fluid velocity and scanner velocity.

The results show that the SLICR correlation converges
after an ensemble length of about 2.0 x 10* pixel counts (or
20 line scans of 1000 pixels in our simulations) for 100nm
particles, and about 1.4 x 10° pixel counts (or 140 line scans)
for 7nm particles (table 1). The difference in convergence
behavior between particle sizes is due to the increased contrib-
ution of diffusion to the displacements of the smaller parti-
cles. Meanwhile, convergence of the SCC algorithm required
about 6.0 x 10* and 3.0 x 10° pixel counts for 100nm and
7nm particles, respectively. This difference suggests that the
filtered phase correlation of SLICR increases the robustness
of the measurements against the deleterious effects of using
flow tracers that exhibit significant Brownian motion.

The general trends for all cases show that the velocity
estimates increase with increasing ensemble lengths until
the plateau region is reached. For SCC with 7nm particles,
the mean velocity ratio values were close to zero (with large
95% confidence intervals indicating the frequent change in
the peak detection) over smaller number of ensemble up
to 2'* (16384) pixel counts. Such behavior represents the

o
o

o
o

Fluid Velocity / Scanner Velocity
o
N

02 —*%—7nm SCC
-=X—= 7nm SLICR
ol —<—100nm SCC |
-=g- 100nm SLICR
Expected
R e

Ensemble - Total pixel counts (pixels)

Figure 6. Convergence behavior of SLICR and SCC algorithms
for synthetic images of 7nm and 100nm flow tracer particles
for the velocity measurement normalized by the expected value,
corresponding to the measurement with the input velocity of
1000 pm s~ ! with dwell time of 2.0 ys.

Table 1. Convergence estimate for the measurement with synthetic
images.

Convergence (total pixel counts)

Particle size (nm) SCC SLICR
7 3.0 x 10° 1.4 x 10°
100 6.0 x 10* 2.0 x 10*

significant presence of random errors in the measurement.
Subsequently, the deviation in the mean measurement for all
cases decreased towards larger number of pixel counts being
averaged.

These convergence estimates are most significantly influ-
enced by the diffusion coefficient in the system as described
previously. On the other hand, the fluid to scanner ratio only
minimally affected the convergence behavior while primarily
contributing to the bias error.

Bias correction: synthetic images

Figure 7 shows the accuracy improvement of our bias correc-
tion model on the individually converged ensemble SLIRC
velocity estimates in synthetic images. The mean numbers of
pixels required for convergence were 1.4 x 10*and 1.3 x 10°
for 100nm and 7nm particles, respectively, for the range of
different fluid to scanner velocity ratios shown on figure 7.
As predicted by equation (10), the bias error increases with
the ratio of the fluid velocity to that of the scanner (i.e. rela-
tively slow scanning), with a maximum error magnitude
of about 11 pixels. Conversely, high scanning velocities
decreased the bias error, approaching the behavior of tradi-
tional ‘snapshot’ imaging. The plus and circular markers in
figure 7 show the remaining error after application of our bias
correction model.
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Figure 7. Absolute velocity errors with respect to the velocity
ratio (fluid/scanning) measured from the individually converged
ensemble SLICR measurements.

These results indicate that applying our bias correction
reduced the measurement error to within 3.3 x 1072 pixels for
synthetic data. The 95% confidence interval about the mean
error was within 1.0 x 1072 pixels. The remaining scatter in
the errors of the corrected measurements is likely due to the
various unaccounted random sources of error to which PIV-
like algorithms are subject (the subpixel fitting algorithm, etc),
the mitigation of which are beyond the scope of this study.

Experimental demonstration

Figure 8 shows representative CLSM images and corre-
sponding correlations of 7nm and 100nm particles in water
flowing through our microfluidic channel. These images are
qualitatively similar to those presented previously by Rossow
et al [1], and exhibit the familiar diagonal patterns that char-
acterize the line-scan imaging of moving particles. Note that
these are not 2D images: instead, each row of pixels represents
a single line-scan (starting from the top), and subsequent line
scans across the same physical domain appear as consecutive
rows in the images. In other words the slopes of the 100nm
particles’ trajectories shown in figure 8(a) represent their
velocities, subject to the bias error discussed previously.

The images of 7nm particles shown in figure 8(b) lack any
clearly discernable patterns or features, and they appear more
like random noise. This is due to the significantly increased
Brownian motion and dimmer images of the smaller nanopar-
ticles. This image is demonstrative of the challenge inherent
in preforming PIV measurements of such small and diffusion-
dominated flow tracers with SCC.

Convergence estimation: experimental images

Figure 9 illustrates the convergence behavior of ensemble
correlations for experimentally obtained images. The mea-
sured velocity is normalized by the expected velocity (corre-
sponding to the measurement with the fixed input velocity of

1000 pm s~! with dwell time of 2.0 ys). As with the synth-
etic data, the SLICR algorithm significantly reduced the
number of pixel counts (or line scans) required for conv-
ergence of the correlations for both 7nm and 100nm par-
ticles compared to the standard correlation (table 2). In this
case, the ensemble SLICR converged after about 1.0 x 10*
and 1.3 x 10° pixels for 100nm and 7nm particles, respec-
tively (in contrast to 2.0 x 10* and 1.4 x 10 pixels for synth-
etic images). Meanwhile, the standard ensemble correlation
required larger number of pixels to converge for both particle
sizes—5.0 x 10* pixels for 100nm particles, and 4.0 x 10°
for 7nm particles, compared to 6.0 x 10*and 3.0 x 10° pixels
for synthetic images.

Figure 10 compares the theoretical and measured velocity
profiles within the micro channel using individually conv-
erged SLICR and un-converged SCC with both particle sizes.
In these trials, the mean number of pixels required for conv-
ergence using our algorithm was 1.6 x 10* for the 100nm
particles and 1.4 x 10° for the 7nm particles. For consistent
comparison between methods, the SCC measurements were
ensemble-averaged using the same number of pixel counts
required to converge the SLICR measurements. As a result, the
SCC measurements did not themselves converge. After bias
correction, nearly all of the measured velocities fell within the
95% confidence interval about the nominal theoretical velocity
profile. These results illustrate the importance of bias correc-
tion in CLSM velocimetry measurements. In this experiment,
the uncorrected bias error was highest near the centerline of the
channel, where the flow velocity is greatest. This is due to the
previously discussed relationship between the bias error and the
fluid-to-scanning velocity ratio, wherein higher flow velocities
result in greater bias error for a fixed scanning velocity. In this
case, the uncorrected bias error at the centerline reached about 6
pixels (10% of the nominal velocity) for the converged SLICR
measurements, which was reduced to 4.0 x 107! pixels with
the correction model being applied. Meanwhile, the absolute
errors reached about 3.0 x 10! pixels with un-converged SCC
measurements for both particle sizes, due to the combined and
uncorrected effects of both random and bias errors.

Discussion

Our analysis demonstrates the significant impact of three
factors on the accuracy of CLSM based flow velocimetry;
namely, the diffusion of the tracer particles, the laser scanning
speed, and the velocity of the flow. Subsequently, a processing
scheme was developed based on how each factor contributes
to the error.

The Brownian motion of tracer particles is the primary
driver of random errors in these correlation-based measure-
ments of velocity. This effect manifests as a broad Gaussian-
shaped correlation in the ensemble-averaged standard
correlation. As other researchers have pointed out, the reason
for this shape is that the cross correlation of particle images
represents a probability density function of the different
particle displacements that contributed to the measurement
[5, 10, 20, 21]. In the case of Brownian motion, the probability
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Figure 8. Line CLSM images of (a) 100nm particles and (b) 7nm particles suspended in water, subject to flow aligned with the direction
of scanning. The corresponding correlations for 100nm (c) SCC and (d) SLICR, and for 7nm (e) SCC and (f) SLICR.
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Figure 9. Convergence behavior of SLICR and SCC algorithms
for experimental images of 7nm and 100 nm flow tracer particles
for the velocity measurement normalized by the expected value,
corresponding to the measurement with the input velocity of
1000 pm s~! with dwell time of 2.0 ys.

density function of displacements is itself a zero-mean
Gaussian function. If the velocities of tracer particles are
dominated by diffusion on the time scale of the measurement,
then so does this broad Gaussian shape dominate the shape of
the cross correlation, as shown in figure 11(a).

This degrades the ability of peak-searching algorithms to
correctly identify the comparatively small correlation peak
corresponding to the mean background velocity of the flow.
The ensemble correlation mitigates this effect because the
‘true’ correlation peak grows to prominence after a sufficient

Table 2. Convergence estimate for the measurement with
experimental images.

Convergence (total pixel counts)

Particle size (nm) SCC SLICR
7 4.0 x 10° 1.3 x 10°
100 5.0 x 10* 1.0 x 10*

amount of information (e.g. pixels or images) has contributed
to the measurement. In contrast, the RPC approach recognizes
that the random velocities due to diffusion and the mean back-
ground velocity are carried by different wave numbers in the
Fourier domain of the phase correlation. More specifically,
the RPC filter inherently assumes that the true mean displace-
ment is carried by the lower wave numbers in the phase cor-
relation, and the displacements due to diffusion are carried
by the higher wave numbers. Our results show that preferen-
tially weighting the contribution of the lower wave numbers to
the phase correlation suppresses the appearance of the broad
Gaussian-shape that characterizes diffusion-dominated corre-
lations, while preserving the peak that indicates the true mean
velocity of the particle patterns (figure 11(b)). Amplifying the
relative prominence of this ‘true’ peak accelerates the rate at
which the measurement converges with respect to the amount
of information contributing to it (in this case, pixels). In this
way, our method represents a mechanism to increase not only
the accuracy of CLSM velocimetry measurements, but also
the temporal resolution by reducing the time needed for image
acquisition by more than one order of magnitude compared
to existing methods. Moreover, our observations support
the RPC filter’s fundamental assumption about the spectral
anatomy of the phase correlation.



Meas. Sci. Technol. 27 (2016) 104003

B H Jun et al

N (2N H [$)] (=]
o o o o o
T

Displacement (pixels)

o

50

Measurement plane (um)

< % 0x O +

7nm SLICR (Error Corrected)

100nm SLICR (Error Corrected)

7nm SLICR (Bias Error Uncorrected)
100nm SLICR (Bias Error Uncorrected)
7nm SCC (Unconverged)

100nm SCC (Unconverged)
Theoretical Poiseuille Flow
Theoretical Confidence Band

Figure 10. Comparison of different cases of SLICR and SCC measurements of velocity across the depth of the channel, compared to the
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Figure 11. Representative correlation shape with peaks indicated
for (a) the instantaneous SCC and SLICR showing high variability
between measured and theoretical peaks (diffusion-dominated
signal) and (b) converged SCC and SLICR showing accurately
matched measured and theoretical peaks (suppressed diffusion with
the SLICR).

The degree to which Brownian motion affects correla-
tion-based velocity measurements depends not only on the
diffusion coefficient itself, but also on the rate of image
acquisition (i.e. the microscope’s scanning velocity) and
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the velocity of the underlying flow. Because of the finite
scanning velocity of CLSM, the motion of the particles is
often significant on the time scale of the acquisition of a
single line (or ‘frame’), which introduces an imaging arti-
fact similar to motion blur in traditional cameras. The limit
of infinitely fast scanning represents the traditional ‘snap-
shot’ photography, which is ideally absent of motion blur.
In this situation, diffusion affects the relationship of particle
positions between scans, but not within individual scans.
The severity of the decorrelating effect of diffusion on the
inter-frame positions of the particles depends on the diffu-
sion coefficient and the amount of time separating the two
frames (the ‘inter-frame time’ in traditional PIV). Therefore,
from the standpoint of minimizing the decorrelating effects
of diffusion, it is advantageous to use the fastest possible
scanning velocity for this type of CLSM imaging (i.e. the
smallest possible inter-frame time). However, as previous
researchers have pointed out, the error of PIV measure-
ments relative to the measured velocity (the ‘relative error’)
increases when the inter-frame time is so short that the par-
ticle displacements are small between frames compared to
the fixed sources of error in PIV measurements (discretiza-
tion, sub-pixel fitting, etc). Therefore, from the standpoint
of reducing the relative error of PIV measurements, it is
advantageous to select the largest possible inter-frame time
that does not result in unacceptable loss of correlation due
to particles leaving the interrogation region [22]. These
competing requirements of small inter-frame time to mini-
mize the effects of diffusion and large inter-frame time to
minimize the relative error of the measurements represent
one of the principle challenges in the design of uPIV exper-
iments. The process of image formation by scanning using
confocal microscopes and the use of diffusion-dominated
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nanoparticles as flow tracers further exacerbate these dif-
ficulties by allowing diffusion effects within individual
frames (scans) and introducing bias error in the displace-
ment estimate. Our results address these challenges by
demonstrating experimentally and through simulation that
the effects of Brownian motion are the primary driver of
random errors in CLSM-based measurements of particle
velocity, and by providing an analytical method by which
to mitigate bias errors. Additionally, our analysis verifies
the conjecture that these errors should depend on the ratio
of the scanning velocity to the flow velocity, rather than on
either parameter alone. These insights provide researchers
with guidance in the design of similar experiments.

The primary limitation in the present study was the use of
a 1D scanning instrument to interrogate flows. We addressed
this by constraining our analysis to flows that were them-
selves 1D and aligned with the scanning axis of the micro-
scope, although in practice the most interesting flows will
undoubtedly exhibit 2D and 3D structures. We expect that
our analysis and principles applied herein can be extended
to higher-dimensional measurements and to interrogate 2D
flow structures with CLSM, and this work is the subject of our
continuing efforts. Moreover, our future analysis will include
further investigation to identify additional sources of error in
CLSM velocimetry that were not faithfully represented by
our simulations, which likely contributed to the discrepancy
between the errors we reported between our simulated and
experimental results.

Despite these limitations, to our knowledge this work
presents the first successful attempt to quantify the error of
CLSM-based flow velocimetry and demonstrate improved
robustness and accuracy of the method using diffusion-dom-
inated nanoparticles as flow tracers. As a result, we present a
theory for and establish a methodology to mitigate the major
sources of error and yield reliable velocity measurements
with these instruments. More broadly, our research represents
a step toward leveraging the exceptional resolving power of
confocal microscopes to accurately study the kinematics of
nanometer-sized molecules and particles that are of great
interest to a wide range of biological systems and cellular
mechanics, but have heretofore been obscured by limitations
in measurement technology.
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