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Nomenclature

Xf p, 	 Position of the pth particle from a confocal scanned 
image (frame f  )

X f p,
0 	 Instantaneous position of the particle at the beginning of 

the scan

′X f p, 	 Random movement caused by Brownian motion in 
discrete time

t f p, 	 Actual time elapsed for a scanner to detect particle 
before the end of the scanning

t∆ 	 Time elapsed per frame (line)
t f p,∆ 	 t tf p f p1, ,−+
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Abstract
We present a new particle image correlation technique for resolving nanoparticle flow velocity 
using confocal laser scanning microscopy (CLSM). The two primary issues that complicate 
nanoparticle scanning laser image correlation (SLIC)–based velocimetry are (1) the use of 
diffusion-dominated nanoparticles as flow tracers, which introduce a random decorrelating error 
into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which 
introduces a bias error. To date, no study has quantified these errors or demonstrated a means to 
deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation 
(RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement 
an ensemble RPC instead of using an ensemble standard cross-correlation, and develop a SLIC 
optimal filter that maximizes the correlation strength in order to reliably and accurately detect 
the correlation peak representing the most probable average displacement of the nanoparticles. 
Secondly, we developed an analytical model of the SLIC measurement bias error due to image 
scanning of diffusion-dominated tracer particles. We show that the bias error depends only 
on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use 
this model to correct the induced errors. We validated our technique using synthetic images 
and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our 
technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the 
images tested in this study. Moreover, our optimized RPC filter reduces the number of image 
pairs required for the convergence of the ensemble correlation by two orders of magnitude 
compared to the standard cross correlation. This feature has broader implications to ensemble 
correlation methods and should be further explored in depth in the future.
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Xf p,∆ 	 X Xf p f p1, ,−+

X f p,
0∆ 	 X Xf p f p1,

0
,

0−+
Uf	 Velocity of the fluid
Us	 Velocity of the laser scanner
D	 Diffusion coefficient m s2 1µ µ −

PIV	 Particle image velocimetry
GCC	 Generalized cross correlation
RPC	 Robust phase correlation
SLIC	 Scanning laser image correlation
SLICR	 Scanning laser image correlation—robust phase 

correlation
RICS	 Raster image correlation spectroscopy
FCS	 Fluorescent correlation spectroscopy
CLSM	 Confocal laser scanning microscopy
SNR	 Signal-to-noise ratio

Introduction

Scanning laser image correlation (SLIC) [1] is an image-based 
technique for measuring the velocity of flow-tracer particles 
suspended in a liquid using confocal laser scanning micros-
copy (CLSM). The fundamental operating principle of SLIC 
is equivalent to that of traditional particle image velocimetry 
(PIV): a sequence of images is acquired with a known time 
separation, and the displacement of particle patterns between 
consecutive images is measured using cross-correlations. 
However, the specialized imaging arrangement of CLSM 
introduces recording artifacts that preclude the straightfor-
ward application of PIV algorithms to CLSM images. The 
objective of this work is to identify these specific artifacts, 
quantify their effects on the accuracy of correlation-based 
velocity measurements, and subsequently develop and dem-
onstrate algorithms that mitigate them.

PIV is well developed for measuring fluid velocity fields in 
planar or volumetric regions of interest [2, 3], and its exten-
sion to light microscopy (µPIV) has been widely and suc-
cessfully adopted for interrogating micro-scale flows [4, 5]. 
However, the diffraction-limited optics of light microscopy 
limit the spatial resolution of traditional µPIV measurements 
to approximately 0.1 µm. This precludes the use of µPIV for 
interrogating nanoscale flow and subcellular kinematic pro-
cesses such as nanoparticle advection and diffusion across 
extra-cellular matrices or the transport of fluorescently labeled 
molecules across cell membranes.

In contrast, confocal microscopes overcome the diffraction 
barrier by collecting light through a small pinhole placed in 
line with the objective lens. The pinhole images a single point 
in the specimen, and rejects out-of-focus light by blocking 
rays that do not emanate from the plane of focus. 2D images 
are formed point-by-point by scanning the pinhole/objective 
over the region of interest. This arrangement enables spatial 
resolution on the order of nanometers [1, 6]. On this basis, 
CLSM is often a preferred technique for imaging small-scale 
features of fixed cells [6–9].

However, the high spatial resolution of CLSM comes at the 
expense of temporal resolution. The formation of images by 
scanning is slow compared to bright field arrangements and 

introduces ‘motion blur’ when imaging specimens that move 
with velocity similar to that of the scanner. For example, par-
ticles flowing in the same direction as the scanner will appear 
stretched. CLSM is therefore not widely used to interrogate 
many of the dynamic transport processes of interest to cellular 
biology.

Despite this shortcoming, Rossow et al used PIV-like algo-
rithms to measure the velocities of flow tracer particles from 
1D CLSM images (i.e. single line-scans) [1]. In this study, 
the researchers captured CLSM images of 0.1 µm particles 
flowing in a microfluidic channel, and in vivo in the circula-
tory systems of transparent embryonic zebra fish. However, 
assessing the accuracy of their results is difficult because no 
estimates of error or uncertainty were reported. Moreover, 
their report does not address the two major sources of error to 
which correlation-based velocity measurements from CLSM 
images are subject: a random error due to the Brownian 
motion of small tracer particles, and a bias error due to the 
formation of images by progressive scanning.

The positions of tracer particles in successive CLSM 
images are related by the velocity of the fluid as well as a 
random displacement due to Brownian motion. As the time 
between image pairs increases, these random displacements 
cause the particles’ positions to deviate from those of the fluid 
pathlines. Such a stochastic process introduces a random error 
into the cross-correlation based velocity estimate. Moreover, 
because the images of multiple particles contribute to each 
cross correlation, and because their random displacements are 
by definition uncorrelated, this effect manifests as randomly 
distributed peaks in the cross correlation, as illustrated in 
figure 1.

The deleterious effects of diffusion on the cross correla-
tion are not unique to CLSM images, but similarly affect any 
system that images tracer particles with significant diffusion. 
Typically, these effects are dealt with by summing the correla-
tions of many pairs of images so that the zero-mean errors of 
diffusion average out, and the remaining correlation peak is 
interpreted to represent the best estimate of the time-averaged 
displacement of the tracer particles [3, 10]. This summing of 
correlations is known as the ‘ensemble correlation’, which has 
been shown to reduce random error in micro particle image 
velocimetry (µPIV) experiments compared to single-pair 
correlations [2, 5]. The accuracy of the ensemble correla-
tion-based displacement estimate depends on the number of 
image pairs used, or more appropriately, the total number of 
pixels contributing to the correlation. Therefore, the number 
of frames (defined for this study as the number of horizontal 
single pixel line scans) is critical for accurate velocity meas-
urements using diffusion-dominated particles as flow tracers.

In addition to the effects of diffusion, a second significant 
error source in SLIC arises from the formation of images by 
laser scanning. In SLIC, a laser beam scans in one direction 
across the imaging domain, and light is collected from one 
point at a time (figure 2(a)). Unlike traditional PIV images, 
a CLSM image does not represent an instantaneous snap-
shot of the entire flow field. Rather, each pixel is recorded 
sequentially in time, with a delay between pixels that is usu-
ally significant compared to the velocity of the tracer particles. 
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Because of this, the images of the particles within CLSM pho-
tographs (and their positions between recordings) are distorted 
according to the ratio of the particle velocity to the CLSM 
scanning velocity. As illustrated in figure 2, this effect mani-
fests as a bias error in the velocity measurement. Specifically, 
the measured displacement is biased toward zero as the ratio 
between the particle and scanning velocity approaches unity, 
while the limiting case of infinitely fast scanning velocity 
is tantamount to traditional ‘snapshot’ imaging. Figure 2(b) 
illustrates this bias error with the example of a 1D line scan 
(figure 2(a)) acquired with a single particle flowing under con-
stant velocity.

A protocol for minimizing both the random and bias 
errors to which SLIC-based flow velocimetry is subject will 
enable the development of more robust systems for using con-
focal microscopy to characterize nanoscale flow kinematics. 
Currently, however, no such protocol exists. Here, we propose 

a novel processing method that combines the robust phase 
correlation (RPC) [11, 12] and ensemble correlation [4, 5] 
with SLIC [1], and develops and implements a framework for 
bias error correction to overcome these limitations.

Robust phase correlation (RPC)

The RPC algorithm extends traditional PIV by applying 
a filter to the generalized cross correlation (GCC or ‘phase 
correlation’) in the Fourier domain [11–13]. The GCC was 
first utilized by Wernet [14] for PIV images, demonstrating 
the effect of the symmetric phase only filtering. Successively, 
the RPC filter was improved as a new GCC filter not only for 
planar PIV, but also for µPIV using light microscope images 
that exhibited comparatively greater background noise and 
lower SNR than traditional measurements [11, 15, 16]. This 
suggests that the spectral characteristics of those light micro-
scope images were to some extent congruent with the theor
etical model of RPC. However, the image formation process 
of CLSM is significantly different from that of traditional 
cameras (illustrated as ‘motion blur’), and it is therefore likely 
that their spectral characteristics, too, will differ. Nonetheless, 
previous results suggest that an RPC-like filter, of yet undeter-
mined width, will likewise improve the correlation SNR and 
reduce errors in CLSM velocimetry.

Bias correction

The particle image positions in CLSM are influenced by three 
primary factors: fluid velocity (Uf), scanner velocity (Us), 
and random displacement (X′) caused by Brownian motion. 
Equation (1) represents the positions of 1D confocal images 
of a tracer particle in a uniform, unidirectional flow. The 
Xf p,  is the position in the image of the pth particle from the 

recorded confocal line scan (fth frame). X f p,
0  refers to the ini-

tial position of the pth particle in space at the beginning of the 
fth frame, and t f p,  is the time elapsed between the beginning 
of the fth frame and the moment the scanner arrives at the 
position of the pth particle (i.e. X Uf p, s/ ). ′X f p,  represents the 
random displacement of the pth particle during the interval 
t f p, . Subsequently, the same definition is assigned for the next 

Figure 1.  Schematic of expected contributions of Brownian motion to particle motion in flow, in which correlation quality decreases while 
imaging small-sized nanoparticles.

Figure 2.  (a) Illustration of single line scanning and (b) presence 
of bias errors at a particular ratio of the scanning and fluid 
velocities. This example illustrates the bias error alone, without the 
contributions of random error due to diffusion.
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consecutive position and time variables used for each consec-
utive frame (  f  =  1, 2, 3 …).

X X U t Xf p f p f p f p, ,
0

f , ,= + ⋅ + ′ � (1)

Subsequently, the displacement of particles between an image 
pair is given by equation(2):

X X X X U t t X Xf p f p f p f p f p f p f p f p1, , 1,
0

,
0

f 1, , 1, ,− = − + ⋅ − + −′ ′+ + + +( )
� (2)

The difference X Xf p f p1, ,−+  will be referred to as Xf p,∆  and 
t t tf p f p f p, 1, ,∆ = −+ , which is the interval between the times 

at which the scanner reaches the position of the pth particle 

in subsequent frames 
X

U
f p,

s( ) ∆
. Initial positions X Xf p f p1,

0
,

0−+  

(referred as X f p,
0∆ ) can be expressed alternatively as equa-

tion  (3), t∆  is the recorded elapsed time per frame from 

CLSM and ′   X f p,
0  is the random displacement that occurred 

between the beginnings of frames f and f  +  1.

∆ = ⋅ ∆ + ′X U t Xf p f p,
0

f ,
0� (3)

Substituting equation (3) to equation (2), we get

X U t U
X

U
X X Xf p

f p
f p f p f p, f f

,

s
1, , ,

0∆ = ⋅ ∆ + ⋅
∆

+ − +′ ′ ′+
 

� (4)

Additionally, the position of the particle in the image can also 
be expressed in terms of the laser scanning velocity (Us) which 
are represented on equations (5) and (6) below.

X U tf p f p, s ,= ⋅� (5)

X U tf p f p, s ,∆ = ⋅ ∆� (6)

The unknown variables from equation (4) are Uf and the com-

bined random displacement, X X Xf p f p f p1, , ,
0− +′ ′ ′+   which 

occurred over three different time instances. In terms of mea-
surements, we can regard the ensemble averaged Xf p,∆  as the 
most probable displacement of particles estimated by aver-
aging cross-correlation of a confocal scanned image pair over 
total number of particles (q) per each frame with a sufficiently 
large total number of frames (m), given by equation (7).

X
m q

X
1 1

f p

f

m

p

q

f p,

1 1

,  ∑ ∑∆ = ∆
= =

� (7)

Equation (8) below represents the ensemble average of each 
term.

∆ = ⋅ ∆ + ⋅
∆

+ − +′ ′ ′+
 

X U t U
X

U
X X Xf p

f p
f p f p f p, f f

,

s
1, , ,

0� (8)

The ensemble average of the random displacements 

X X Xf p f p f p1, , ,
0− +′ ′ ′+  will yield zero, due to Brownian motion 

which can be modeled as normally distributed variable with 
zero mean [17]. Subsequently, we get equation (9) with one 
unknown variable Uf

X U t U
X

U
f p

f p
, f f

,

s
∆ = ⋅ ∆ + ⋅

∆  
� (9)

After rearranging, the fluid velocity Uf can now be decoupled 
from the measured ensemble averaged displacement Xf p,∆ , 
which consists of the bias error due to the effect of scanning, 
given by equation (10)

U
X

t X U
f p

f p
f

,

, s( / )
=

∆

∆ +∆
� (10)

Processing algorithm

Equation (10) implies that the underlying fluid velocity can 
be accurately estimated when measurements of the tracer 
particles’ displacements are statistically converged and no 
longer subject to significant random fluctuations. Hence, it 
is necessary that the statistical image correlation converge 
within a finite number of ensembles. In order to achieve 
that we develop a processing algorithm (figure 3), referred 
to thereon as SLICR (SLIC with RPC), which differs from 
conventional ensemble SCC and RPC in terms of two spe-
cific steps. First, while the original RPC filter was based on 
a theoretical model of digital image formation, we instead 
apply a modified Gaussian-shaped spectral filter whose width 
(standard deviation) was chosen to be optimal for minimizing 
error and accelerating convergence in ensemble correlations 
of computer-generated CLSM images. Secondly, we use the 
previously described analytical model of CLSM image forma-
tion to account for the measurement bias error due to the scan-
ning process. A complete description of our SLICR algorithm 
follows below.

The details of the first five steps of our processing algo-
rithm involving a Gaussian apodization filter, Fourier trans-
forms (FTs) and ensemble correlation are discussed in detail 
by Eckstein et al [12], which yields the raw (unfiltered) phase 
correlation. The raw phase correlation is then multiplied by a 
Gaussian-shaped weighting function (the ‘RPC’ filter) whose 
value is unity at the zero-wavenumber pixel and exponentially 
decays at larger wave numbers. The only parameter for this 
filter is its standard deviation (or ‘width’), and the method by 
which we define the standard deviation is described later. We 
refer to this filtered phase correlation as the ‘RPC’. After fil-
tering the phase correlation, we calculate its inverse FT, which 
yields the characteristic ‘peak’ whose position indicates the 
most probable displacement of the image pattern (subject to 
the previously described bias error). We estimate the sub-pixel 
location of the correlation peak as the maximum value of the 
continuous Gaussian function that best fits the points sur-
rounding it. Finally, we apply the previously described bias 
correction to this sub-pixel displacement, which yields our 
best estimate of the time-averaged displacement of the parti-
cles that were photographed.

Determination of the RPC filter width

In the absence of an analytical model of the noise char-
acteristics of CLSM imaging, we optimized the width of 
the Gaussian RPC filter using Monte-Carlo error analysis 
of computer-generated CLSM line scans (‘images’) of the 
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steady unidirectional flow of tracer particles (the image gen-
eration procedure is described subsequently). We randomly 
varied the ratio of the particle velocity to scanner velocity (the 
‘velocity ratio’) from 0.01 to 0.1, and varied the rate of dif-
fusion from 10 to 60 pixels2/frame. Each velocity measure-
ment was derived from of an ensemble correlation of 2  ×  105 
pixel counts, which we determined was adequate for all mea-
surements to converge. After calculating the raw (unfiltered) 
phase correlation of each ensemble, we parametrically varied 
the standard deviation of the Gaussian RPC filter from zero 
(essentially a Dirac delta function) to the width of the cor-
relation (i.e. nearly flat). We assessed the measurement error 
for each filter width as the absolute difference between the 
ground truth particle displacement and the SLICR-measured 
displacement after bias correction. As shown in figure 4, our 
analysis indicates that error was minimized for a filter diam-
eter of about 3.3  ×  101 pixels (equivalent to the filter standard 
deviation of about 18 pixels).

Assessment of SLICR algorithm performance

Synthetic image generation

CLSM images of particles under unidirectional flow were 
rendered by sampling synthetic particle flow fields pixel-by-
pixel, scanning horizontally, while continuously advecting 
the underlying tracer particles. The interrogated flow field 
was simulated over a 2D domain, and was seeded with tracer 
particles with random initial vertical and horizontal coordi-
nates. The domain was discretized into 1000 horizontal inter-
rogation regions (or ‘pixels’), each of which represented a 
single station at which the CLSM scanner sampled the field. 
Images were formed progressively by sampling the flow field 
at each pixel, whose resulting brightness was determined by 
integrating the contributions of nearby Gaussian-shaped par-
ticles according to the theory of Adrian and Olsen [18]. The 
positions of the particles were updated between integrations 
according to a prescribed uniform horizontal velocity (in the 
direction of scanning) as the scanner progressed. In our simu-
lations, the fluid velocity was varied from 0 to 100 pixels per 
line (by adjusting the fluid and scanner velocity). The time 
elapsed between each pixel integration corresponded to the 
input scanner velocity divided by the size of the domain. 
Additionally, diffusion was modeled as pseudo-random dis-
placements in the horizontal and vertical directions. This 
pseudo-random displacement was generated from a normal 
distribution with a mean of zero and a standard deviation of 

D2σ τ= ± ⋅ ⋅ , where D is the Stokes–Einstein diffusion 
coefficient [19] in µm2/µs and τ is in the elapsed time per frame 
in seconds. We chose a diffusion coefficient of 70 mm2 s−1  
and 4.9 mm2 s−1 for modeling 7 nm and 100 nm particles, 
respectively. The particles were modeled to be suspended in 
water at 25 °C, which allowed the particles to move freely 
due to diffusion and advection. In our simulations, a single 
horizontal line was scanned repeatedly to match the behavior 
of the experimental apparatus described later. Uncorrelated 
Gaussian noise was added to each pixel to represent the 

Figure 3.  Our SLICR processing algorithm for measuring time-
averaged velocity of particles imaged by confocal microscopy.

Figure 4.  Relationship between RPC filter diameter and 
displacement error magnitude, as determined by Monte-Carlo 
analysis of synthetic computer generated confocal microscope 
images of tracer particles under steady unidirectional flow.
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effects of imaging noise, with a mean value of 0 and standard 
deviation of 10% of the pixels’ saturation intensity. To main-
tain consistency between our simulations and experiments, 
we simulated particle diameters of 7 nm and 100 nm; these 
corresponded to particle image diameters of 2 and 6 pixels, 
respectively. These particle image diameters (Dp  =   2 · DA)  
were calculated by using the autocorrelation diameter (DA) 
measured from the experimental images obtained with 
nanoparticles [10].

Micro-channel flow experiments

To evaluate the performance of our SLICR algorithm on 
real data, we collected confocal images of nanometer-sized 
tracer particles suspended in water flowing through a plastic 
microfluidic channel of rectangular cross section (μ-Slides I 
Luer, ibidi Inc). Figure 5 illustrates the overall experimental 
system and imaging location. The dimensions of the channel 
were 0.1 mm (depth)  ×  5 mm (width)  ×  50 mm (length). 
Polystyrene microspheres (0.1 µm diameter; Fisher Scientific) 
and CdSe/ZnS quantum dots (7 nm diameter; Sigma-Aldrich, 
694614) were used as tracer particles. The channel was filled 
with a suspension of particles in water with a seeding density 
of 1 mg/100 ml. The volumetric flow rate through the channel 
was controlled by a syringe pump (Harvard Apparatus), and 
ranged from 0.005 to 0.5 µl s−1. The interrogation region was 
located near the center of the channel (x and z-axis), with 11 
different positions (44, 40, 30, 20, 10, 0, −10, −20, −30, 40 
and  −44 µm) spaced along y-axis (figure 5). The nominal 
expected flow velocities at the interrogation spot ranged from 
10 to 1000 µm s−1.

A Nikon A1R scanning laser confocal microscope (Nikon 
Corporation, Tokyo, Japan) was used to photograph the flow 
through the microfluidic channel. The channel was viewed 
through a 60  ×  objective lens (numerical aperture NA  =  1.4, 
working distance of 0.2 mm), and illuminated by an argon ion 
laser (561 nm wavelength). The scanned path was a line 512 
pixels long, oriented approximately parallel to (and in the 
same direction as) the mean flow. The dwell time at each pixel 
(exposure time per pixel) was selected between 2.2–12 µs,  

with an image magnification of 5.0  ×  10−2 µm per pixel. 
Each trial consisted of 10 000 consecutive scans along the 
same path. The scan time for each line ranged from 0.1 to 
7.7 ms, which includes additional time pausing at the begin-
ning and end of each line. The spatial resolution of the auto-
mated traverse (Z step size) was 1.3  ×  10−1 µm. The total 
image acquisition time ranged from 20 to 120 s for each line 
measurement.

Quantification of error

For both synthetic and experimental images, we assessed the 
performance of our algorithm using two metrics. First, we 
quantified the number of line scans required for convergence 
of the displacement estimate using our SLICR compared to 
the standard cross correlation (SCC) used in SLIC. Our crite-
rion for convergence was set that the velocities across two suc-
cessive ensemble converge within 0.1 pixels. The upper bound 
limit of 0.1 pixels was referenced from the standard deviation 
of 1000 displacement estimates (instantaneously cross-corre-
lated) from synthetic CLSM images generated with no effect 
of diffusion. For the SLICR algorithm, we used the previously 
optimized RPC filter diameter of 3.3  ×  101 pixels. This metric 
depended only on the behavior of the correlations themselves, 
and therefore isolated the effects of the RPC filter from those 
of the bias correction model.

Secondly, we compared the accuracy of converged 
SLICR-calculated particle velocity estimates with and 
without application of our bias correction model. For these 
tests, we parametrically varied the ratio of fluid velocity 
to scanning velocity from 2.0  ×  10−3 to 1.1  ×  10−1 (for 
synthetic data) and 1.0  ×  10−2 to about 1.1  ×  10−1 (for 
experimental data). Our metric of accuracy was the abso-
lute difference between the ground truth velocity of parti-
cles and the SLICR-measured velocity. For synthetic data, 
the ground-truth velocity was taken as that prescribed in 
the simulations. For experimental data, we estimated the 
ground-truth velocity analytically using the equation  for 
fully developed plane Poiseuille flow, evaluated at the meas-
urement locations that we interrogated.

Figure 5.  Schematic of the experimental setup used to obtain confocal microscope images of nanometer-sized tracer particles flowing in 
water through a microchannel.
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As an additional point of comparison, we used SCC and 
SLICR to measure the velocity profile of the channel flow by 
performing measurements at eleven locations evenly spaced 
in the depth direction between  ±50 µm of the channel center-
line. Error was quantified as the difference between the meas-
ured and theoretical velocity at each position.

For all converged measurements using experimental 
images, we estimated the uncertainty of the calculated error 
by propagating (via the Taylor series expansion method) the 
known elemental sources of error in our experiment, and the 
RMS of the measured velocity, through the error equation. 
The elemental sources of error we considered were the volu-
metric flow rate delivered by the syringe pump, the physical 
location of the interrogation region, and the dimensions of the 
microfluidic channel, whose values were used to calculate the 
Poiseuille flow velocity profile. The variation of the fluid vis-
cosity was not included in the uncertainty calculation due to 
the absence of viscosity measurements of the distilled water, 
which was estimated to be marginal relative to other manufac-
turing tolerances.

Results

Convergence of measurements: synthetic images

Figure 6 shows a representative comparison of convergence of 
ensemble SLICR and SCC velocity estimates, for the measured 
velocity normalized by the expected velocity (corresponding to 
the measurement with the fixed input velocity of 1000 µm s−1  
with dwell time of 2.0 µs). The secondary axis was created 
so the ensemble total pixel counts can also be associated with 
a typical digital image size, such as 512  ×  512 pixels (a total 
of 218 pixels). Whiskers indicate the 95% confidence interval 
about the mean velocity ratio (40 data points are shown in the 
plot in order to distinguish markers and whiskers for each case 
across large range of ensemble pixel counts on log-scale). The 
expected velocity (blue) was estimated by using equation (10) 
with known input fluid velocity and scanner velocity.

The results show that the SLICR correlation converges 
after an ensemble length of about 2.0  ×  104 pixel counts (or 
20 line scans of 1000 pixels in our simulations) for 100 nm 
particles, and about 1.4  ×  105 pixel counts (or 140 line scans) 
for 7 nm particles (table 1). The difference in convergence 
behavior between particle sizes is due to the increased contrib
ution of diffusion to the displacements of the smaller parti-
cles. Meanwhile, convergence of the SCC algorithm required 
about 6.0  ×  104 and 3.0  ×  106 pixel counts for 100 nm and 
7 nm particles, respectively. This difference suggests that the 
filtered phase correlation of SLICR increases the robustness 
of the measurements against the deleterious effects of using 
flow tracers that exhibit significant Brownian motion.

The general trends for all cases show that the velocity 
estimates increase with increasing ensemble lengths until 
the plateau region is reached. For SCC with 7 nm particles, 
the mean velocity ratio values were close to zero (with large 
95% confidence intervals indicating the frequent change in 
the peak detection) over smaller number of ensemble up 
to 214 (16 384) pixel counts. Such behavior represents the 

significant presence of random errors in the measurement. 
Subsequently, the deviation in the mean measurement for all 
cases decreased towards larger number of pixel counts being 
averaged.

These convergence estimates are most significantly influ-
enced by the diffusion coefficient in the system as described 
previously. On the other hand, the fluid to scanner ratio only 
minimally affected the convergence behavior while primarily 
contributing to the bias error.

Bias correction: synthetic images

Figure 7 shows the accuracy improvement of our bias correc-
tion model on the individually converged ensemble SLIRC 
velocity estimates in synthetic images. The mean numbers of 
pixels required for convergence were 1.4  ×  104 and 1.3  ×  105 
for 100 nm and 7 nm particles, respectively, for the range of 
different fluid to scanner velocity ratios shown on figure 7.  
As predicted by equation (10), the bias error increases with 
the ratio of the fluid velocity to that of the scanner (i.e. rela-
tively slow scanning), with a maximum error magnitude 
of about 11 pixels. Conversely, high scanning velocities 
decreased the bias error, approaching the behavior of tradi-
tional ‘snapshot’ imaging. The plus and circular markers in 
figure 7 show the remaining error after application of our bias 
correction model.

Figure 6.  Convergence behavior of SLICR and SCC algorithms 
for synthetic images of 7 nm and 100 nm flow tracer particles 
for the velocity measurement normalized by the expected value, 
corresponding to the measurement with the input velocity of  
1000 µm s−1 with dwell time of 2.0 µs.

Table 1.  Convergence estimate for the measurement with synthetic 
images.

Particle size (nm)

Convergence (total pixel counts)

SCC SLICR

7 3.0  ×  106 1.4  ×  105

100 6.0  ×  104 2.0  ×  104
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These results indicate that applying our bias correction 
reduced the measurement error to within 3.3  ×  10−2 pixels for 
synthetic data. The 95% confidence interval about the mean 
error was within 1.0  ×  10−2 pixels. The remaining scatter in 
the errors of the corrected measurements is likely due to the 
various unaccounted random sources of error to which PIV-
like algorithms are subject (the subpixel fitting algorithm, etc), 
the mitigation of which are beyond the scope of this study.

Experimental demonstration

Figure 8 shows representative CLSM images and corre
sponding correlations of 7 nm and 100 nm particles in water 
flowing through our microfluidic channel. These images are 
qualitatively similar to those presented previously by Rossow 
et al [1], and exhibit the familiar diagonal patterns that char-
acterize the line-scan imaging of moving particles. Note that 
these are not 2D images: instead, each row of pixels represents 
a single line-scan (starting from the top), and subsequent line 
scans across the same physical domain appear as consecutive 
rows in the images. In other words the slopes of the 100 nm 
particles’ trajectories shown in figure  8(a) represent their 
velocities, subject to the bias error discussed previously.

The images of 7 nm particles shown in figure 8(b) lack any 
clearly discernable patterns or features, and they appear more 
like random noise. This is due to the significantly increased 
Brownian motion and dimmer images of the smaller nanopar-
ticles. This image is demonstrative of the challenge inherent 
in preforming PIV measurements of such small and diffusion-
dominated flow tracers with SCC.

Convergence estimation: experimental images

Figure 9 illustrates the convergence behavior of ensemble 
correlations for experimentally obtained images. The mea-
sured velocity is normalized by the expected velocity (corre
sponding to the measurement with the fixed input velocity of 

1000 µm s−1 with dwell time of 2.0 µs). As with the synth
etic data, the SLICR algorithm significantly reduced the 
number of pixel counts (or line scans) required for conv
ergence of the correlations for both 7 nm and 100 nm par-
ticles compared to the standard correlation (table 2). In this 
case, the ensemble SLICR converged after about 1.0  ×  104 
and 1.3  ×  105 pixels for 100 nm and 7 nm particles, respec-
tively (in contrast to 2.0  ×  104 and 1.4  ×  105 pixels for synth
etic images). Meanwhile, the standard ensemble correlation 
required larger number of pixels to converge for both particle 
sizes—5.0  ×  104 pixels for 100 nm particles, and 4.0  ×  106 
for 7 nm particles, compared to 6.0  ×  104 and 3.0  ×  106 pixels 
for synthetic images.

Figure 10 compares the theoretical and measured velocity 
profiles within the micro channel using individually conv
erged SLICR and un-converged SCC with both particle sizes. 
In these trials, the mean number of pixels required for conv
ergence using our algorithm was 1.6  ×  104 for the 100 nm 
particles and 1.4  ×  105 for the 7 nm particles. For consistent 
comparison between methods, the SCC measurements were 
ensemble-averaged using the same number of pixel counts 
required to converge the SLICR measurements. As a result, the 
SCC measurements did not themselves converge. After bias 
correction, nearly all of the measured velocities fell within the 
95% confidence interval about the nominal theoretical velocity 
profile. These results illustrate the importance of bias correc-
tion in CLSM velocimetry measurements. In this experiment, 
the uncorrected bias error was highest near the centerline of the 
channel, where the flow velocity is greatest. This is due to the 
previously discussed relationship between the bias error and the 
fluid-to-scanning velocity ratio, wherein higher flow velocities 
result in greater bias error for a fixed scanning velocity. In this 
case, the uncorrected bias error at the centerline reached about 6 
pixels (10% of the nominal velocity) for the converged SLICR 
measurements, which was reduced to 4.0  ×  10−1 pixels with 
the correction model being applied. Meanwhile, the absolute 
errors reached about 3.0  ×  101 pixels with un-converged SCC 
measurements for both particle sizes, due to the combined and 
uncorrected effects of both random and bias errors.

Discussion

Our analysis demonstrates the significant impact of three 
factors on the accuracy of CLSM based flow velocimetry; 
namely, the diffusion of the tracer particles, the laser scanning 
speed, and the velocity of the flow. Subsequently, a processing 
scheme was developed based on how each factor contributes 
to the error.

The Brownian motion of tracer particles is the primary 
driver of random errors in these correlation-based measure-
ments of velocity. This effect manifests as a broad Gaussian-
shaped correlation in the ensemble-averaged standard 
correlation. As other researchers have pointed out, the reason 
for this shape is that the cross correlation of particle images 
represents a probability density function of the different 
particle displacements that contributed to the measurement  
[5, 10, 20, 21]. In the case of Brownian motion, the probability 

Figure 7.  Absolute velocity errors with respect to the velocity 
ratio (fluid/scanning) measured from the individually converged 
ensemble SLICR measurements.
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density function of displacements is itself a zero-mean 
Gaussian function. If the velocities of tracer particles are 
dominated by diffusion on the time scale of the measurement, 
then so does this broad Gaussian shape dominate the shape of 
the cross correlation, as shown in figure 11(a).

This degrades the ability of peak-searching algorithms to 
correctly identify the comparatively small correlation peak 
corresponding to the mean background velocity of the flow. 
The ensemble correlation mitigates this effect because the 
‘true’ correlation peak grows to prominence after a sufficient 

amount of information (e.g. pixels or images) has contributed 
to the measurement. In contrast, the RPC approach recognizes 
that the random velocities due to diffusion and the mean back-
ground velocity are carried by different wave numbers in the 
Fourier domain of the phase correlation. More specifically, 
the RPC filter inherently assumes that the true mean displace-
ment is carried by the lower wave numbers in the phase cor-
relation, and the displacements due to diffusion are carried 
by the higher wave numbers. Our results show that preferen-
tially weighting the contribution of the lower wave numbers to 
the phase correlation suppresses the appearance of the broad 
Gaussian-shape that characterizes diffusion-dominated corre-
lations, while preserving the peak that indicates the true mean 
velocity of the particle patterns (figure 11(b)). Amplifying the 
relative prominence of this ‘true’ peak accelerates the rate at 
which the measurement converges with respect to the amount 
of information contributing to it (in this case, pixels). In this 
way, our method represents a mechanism to increase not only 
the accuracy of CLSM velocimetry measurements, but also 
the temporal resolution by reducing the time needed for image 
acquisition by more than one order of magnitude compared 
to existing methods. Moreover, our observations support 
the RPC filter’s fundamental assumption about the spectral 
anatomy of the phase correlation.

Figure 8.  Line CLSM images of (a) 100 nm particles and (b) 7 nm particles suspended in water, subject to flow aligned with the direction 
of scanning. The corresponding correlations for 100 nm (c) SCC and (d) SLICR, and for 7 nm (e) SCC and (f) SLICR.

Figure 9.  Convergence behavior of SLICR and SCC algorithms 
for experimental images of 7 nm and 100 nm flow tracer particles 
for the velocity measurement normalized by the expected value, 
corresponding to the measurement with the input velocity of  
1000 µm s−1 with dwell time of 2.0 µs.

Table 2.  Convergence estimate for the measurement with 
experimental images.

Particle size (nm)

Convergence (total pixel counts)

SCC SLICR

7 4.0  ×  106 1.3  ×  105

100 5.0  ×  104 1.0  ×  104
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The degree to which Brownian motion affects correla-
tion-based velocity measurements depends not only on the 
diffusion coefficient itself, but also on the rate of image 
acquisition (i.e. the microscope’s scanning velocity) and 

the velocity of the underlying flow. Because of the finite 
scanning velocity of CLSM, the motion of the particles is 
often significant on the time scale of the acquisition of a 
single line (or ‘frame’), which introduces an imaging arti-
fact similar to motion blur in traditional cameras. The limit 
of infinitely fast scanning represents the traditional ‘snap-
shot’ photography, which is ideally absent of motion blur. 
In this situation, diffusion affects the relationship of particle 
positions between scans, but not within individual scans. 
The severity of the decorrelating effect of diffusion on the 
inter-frame positions of the particles depends on the diffu-
sion coefficient and the amount of time separating the two 
frames (the ‘inter-frame time’ in traditional PIV). Therefore, 
from the standpoint of minimizing the decorrelating effects 
of diffusion, it is advantageous to use the fastest possible 
scanning velocity for this type of CLSM imaging (i.e. the 
smallest possible inter-frame time). However, as previous 
researchers have pointed out, the error of PIV measure-
ments relative to the measured velocity (the ‘relative error’) 
increases when the inter-frame time is so short that the par-
ticle displacements are small between frames compared to 
the fixed sources of error in PIV measurements (discretiza-
tion, sub-pixel fitting, etc). Therefore, from the standpoint 
of reducing the relative error of PIV measurements, it is 
advantageous to select the largest possible inter-frame time 
that does not result in unacceptable loss of correlation due 
to particles leaving the interrogation region [22]. These 
competing requirements of small inter-frame time to mini-
mize the effects of diffusion and large inter-frame time to 
minimize the relative error of the measurements represent 
one of the principle challenges in the design of µPIV exper-
iments. The process of image formation by scanning using 
confocal microscopes and the use of diffusion-dominated 

Figure 11.  Representative correlation shape with peaks indicated 
for (a) the instantaneous SCC and SLICR showing high variability 
between measured and theoretical peaks (diffusion-dominated 
signal) and (b) converged SCC and SLICR showing accurately 
matched measured and theoretical peaks (suppressed diffusion with 
the SLICR).

Figure 10.  Comparison of different cases of SLICR and SCC measurements of velocity across the depth of the channel, compared to the 
theoretical solution for plane Poiseuille flow (flow rate 0.5 µl s−1, fluid-to-scanner velocity ratio between 0.01 and 0.11).
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nanoparticles as flow tracers further exacerbate these dif-
ficulties by allowing diffusion effects within individual 
frames (scans) and introducing bias error in the displace-
ment estimate. Our results address these challenges by 
demonstrating experimentally and through simulation that 
the effects of Brownian motion are the primary driver of 
random errors in CLSM-based measurements of particle 
velocity, and by providing an analytical method by which 
to mitigate bias errors. Additionally, our analysis verifies 
the conjecture that these errors should depend on the ratio 
of the scanning velocity to the flow velocity, rather than on 
either parameter alone. These insights provide researchers 
with guidance in the design of similar experiments.

The primary limitation in the present study was the use of 
a 1D scanning instrument to interrogate flows. We addressed 
this by constraining our analysis to flows that were them-
selves 1D and aligned with the scanning axis of the micro-
scope, although in practice the most interesting flows will 
undoubtedly exhibit 2D and 3D structures. We expect that 
our analysis and principles applied herein can be extended 
to higher-dimensional measurements and to interrogate 2D 
flow structures with CLSM, and this work is the subject of our 
continuing efforts. Moreover, our future analysis will include 
further investigation to identify additional sources of error in 
CLSM velocimetry that were not faithfully represented by 
our simulations, which likely contributed to the discrepancy 
between the errors we reported between our simulated and 
experimental results.

Despite these limitations, to our knowledge this work 
presents the first successful attempt to quantify the error of 
CLSM-based flow velocimetry and demonstrate improved 
robustness and accuracy of the method using diffusion-dom-
inated nanoparticles as flow tracers. As a result, we present a 
theory for and establish a methodology to mitigate the major 
sources of error and yield reliable velocity measurements 
with these instruments. More broadly, our research represents 
a step toward leveraging the exceptional resolving power of 
confocal microscopes to accurately study the kinematics of 
nanometer-sized molecules and particles that are of great 
interest to a wide range of biological systems and cellular 
mechanics, but have heretofore been obscured by limitations 
in measurement technology.
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